

PAI-003-010415

Seat No. _____

M. Sc. (Semester - IV) Examination

August - 2020

Physical and Material Chemistry: C(PM) - 404

(Reaction Kinetics & Mechanism) (Elective-I)
(Old Course)

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

- (2) All question carry equal marks.
- 1 Answer the following : (Any **Seven**)
 - (a) Define: Collision number, Actinometer, Enzyme, Autooxidation.
 - (b) Discuss photolysis of acetone.
 - (c) Differentiate between photochemical and thermal reactions.
 - (d) What is catalysis? Give different types of catalysis with suitable examples.
 - (e) Explain reaction in gas phase.
 - (f) Give an account of different types of acid-base catalysis.
 - (g) Explain metallic mirror method for the detection of free radicals in chain reactions.
 - (h) Discuss the reaction mechanism of reaction between CO and Cl₂.
 - (i) Differentiate between enzyme catalysis and general catalysts.
 - (j) Discuss quenched flow method.
- Write notes on : (Any Three)
 - (a) Mechanism of acid catalyzed hydrolysis of methyl acetate.
 - (b) Bronsted-Bjerrum equation
 - (c) Types of actinometers
 - (d) Characteristics of chain reactions.

- 3 Answer the following: (Any Two)
 - (a) Discuss thermodynamical formulation of reaction rate.
 - (b) Explain kinetics of heterogeneous catalyzed reaction.

OR

- (c) Deduce an expression for the determination of rate of enzyme catalyzed reactions.
- (d) Give an account of (i) Flash photolysis and (ii) laws of photochemistry.
- 4 Answer the following: (Any Three)
 - (a) Prove that decomposition of acetaldehyde is three-halves order.
 - (b) Discuss upper and lower explosion limits of a reaction between hydrogen and oxygen.
 - (c) Give the reaction mechanism of (i) decomposition of ozone and (ii) ammonium cyanate and urea reaction.
 - (d) Explain secondary salt effect.
- 5 Answer the following: (Any Two)
 - (a) Describe the various factors affecting the rate of an enzyme reaction.
 - (b) Describe theory of homogeneous reactions.
 - (c) Explain classical collision theory in detail.
 - (d) Discuss Relaxation method for the determination of fast reactions.